MATH 20D: Differential Equations Spring 2023 Homework 8

Lecturer: Finn McGlade UC San Diego

Remember to list the sources you used when completing the assignment.
Below NSS is used to reference the text Fundamentals of Differential Equations (9th edition) by Nagle, Saff, Snider
Question (1). Let $A=\left(\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, and $C=\left(\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right)$. Calculate
(a) $A B$
(b) $A C$
(c) $A(B+C)$
(d) A^{-1}
(e) B^{-1}
(e) $B^{-1} A^{-1}$
(f) $\quad(A B)^{-1}$
(h) $\operatorname{det}(A C)$.

Is it true that $A C=C A$? Do we have $\operatorname{det}(A C)=\operatorname{det}(C A)$? Is it always the case that $\operatorname{det}(X Y)=\operatorname{det}(Y X)$ for a pair of 2 -by-2 matrices X and Y ? Do we have $(X Y)^{-1}=$ $Y^{-1} X^{-1}$? Can $X Y$ be invertible if either $\operatorname{det}(X)=0$ or $\operatorname{det}(Y)=0$?

Question (2). (NSS 9.1.1,2, \& 5, NSS 9.4.1, \& 2, and NSS 9.3.17,18, \& 35)
(a) Express the each of the systems below as matrix equations in normal form
(i) $\begin{aligned} x^{\prime} & =7 x+2 y, \\ y^{\prime} & =3 x-2 y\end{aligned}$
(ii) $x^{\prime}=y$,
(iii) $x^{\prime}=\sin (t) x+e^{t} y$, $y^{\prime}=\cos (t) x+\left(a+b t^{3}\right) y$
(iv) $x^{\prime}(t)=3 x(t)-y(t)+t^{2}$,
(v) $r^{\prime}(t)=2 r(t)+\sin (t)$,
$y^{\prime}(t)=-x(t)+2 y(t)+e^{t}$
$\theta^{\prime}(t)=r(t)-\theta(t)+1$.
(b) For each of the matrices $X(t)$ below calculate the matrix $X^{-1}(t)$

$$
\text { (i) } X(t)=\left(\begin{array}{cc}
e^{t} & e^{4 t} \\
e^{t} & 3 e^{4 t}
\end{array}\right) \quad \text { (ii) } \quad X(t)=\left(\begin{array}{cc}
\sin (2 t) & \cos (2 t) \\
2 \cos (2 t) & -2 \sin (2 t)
\end{array}\right) \text {. }
$$

(c) Verify that the function $x(t)=\binom{e^{3 t}}{2 e^{3 t}}$ satisfies the matrix differential equation

$$
x^{\prime}(t)=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right) x(t)
$$

Question (3). (NSS 9.1.7,8, \& 9 and NSS 9.4.5, \& 6) Express each of the second order differential equations below as a first order system in normal form
(a) $3 y^{\prime \prime}+2 y^{\prime}+4 y=0$
(b) $\quad\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+2 y=0$
(c) $y^{\prime \prime}-t y=0$
(d) $\quad y^{\prime \prime}-t y=0$
(e) $y^{\prime \prime}(t)-3 y^{\prime}(t)-10 y(t)=\sin (t)$
$(f) \quad x^{\prime \prime}(t)+x(t)=t^{2}$

Question (4). (NSS 9.4.13,14,15, \& 16) Determine whether the given vector valued functions are linearly dependent or linearly independent.
(a) $\quad\binom{t}{3}, \quad\binom{4}{1}$
(b) $\quad\binom{t e^{-t}}{e^{-t}}, \quad\binom{e^{-t}}{e^{-t}}$
(c) $e^{t}\binom{1}{5}, e^{t}\binom{-3}{-15}$
(d) $\binom{\sin (t)}{\cos (t)},\binom{\sin (2 t)}{\cos (2 t)}$

Question (5). (a) Verify that the vector valued functions

$$
x_{1}(t)=\binom{e^{t}}{e^{t}} \quad \text { and } \quad x_{2}(t)=\binom{e^{-t}}{3 e^{-t}}
$$

give a fundamental solution set to the differential equation

$$
x^{\prime}(t)=A x(t)=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) x(t)
$$

(b) Write down a general solution to the equation $x^{\prime}(t)=A x(t)$.

Question (6). (NSS 9.4.28 \& 30)
(a) Verify that

$$
X(t)=\left(\begin{array}{cc}
e^{-t} & e^{5 t} \\
-e^{-t} & e^{5 t}
\end{array}\right)
$$

is a fundamental matrix for the linear system $x^{\prime}(t)=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right) x(t)$.
(b) Let A be a 2-by-2 matrix and suppose $X(t)$ is the fundamental matrix for the system $x^{\prime}(t)=A x(t)$. Show that if x_{0} is a 2-by-1 constant matrix then

$$
x(t)=X(t) X^{-1}(0) x_{0}
$$

solves the initial value problem

$$
x^{\prime}(t)=A x(t), \quad x(0)=x_{0}
$$

(c) Solve the linear system in (a) subject to the initial condition $x(0)=\left(\begin{array}{ll}3 & -1\end{array}\right)^{T}$.

Question (7). (NSS 9.5.11 \& 12 and NSS 9.5.31 \& 32)
(a) For each of the matrices A below find a general solution to the system $x^{\prime}(t)=A x(t)$

$$
\text { (i) } A=\left(\begin{array}{cc}
-1 & 3 / 4 \\
-5 & 3
\end{array}\right) \quad \text { (ii) } \quad A=\left(\begin{array}{cc}
1 & 3 \\
12 & 1
\end{array}\right)
$$

(b) Solve each of the initial value problems below
(i) $x^{\prime}(t)=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right) x(t), \quad x(0)=\binom{3}{1}$
(ii) $\quad x^{\prime}(t)=\left(\begin{array}{cc}6 & -3 \\ 2 & 1\end{array}\right) x(t), \quad x(0)=\binom{-10}{-6}$

Question (8). (NSS 9.6.1 \& 2, NSS 9.6.5 \& 4, and NSS 9.6.13)
(a) Find a general solution to the system $x^{\prime}(t)=A x(t)$ for each of the matrices A below
(i) $\quad A=\left(\begin{array}{ll}2 & -4 \\ 2 & -2\end{array}\right)$
(ii) $A=\left(\begin{array}{cc}-2 & -5 \\ 1 & 2\end{array}\right)$.
(b) Find a fundamental matrix for the system $x^{\prime}(t)=A x(t)$ for each of the matrices A below

$$
\text { (i) } A=\left(\begin{array}{cc}
-1 & -2 \\
8 & -1
\end{array}\right) \quad \text { (ii) } A=\left(\begin{array}{cc}
-2 & -2 \\
4 & 2
\end{array}\right)
$$

(c) In part (i)-(iv) below, solve the system $x^{\prime}(t)=\left(\begin{array}{cc}-3 & -1 \\ 2 & -1\end{array}\right) x(t)$ for the given initial condition
(i) $x(0)=\binom{-1}{0}$
(ii) $\quad x(\pi)=\binom{1}{-1}$
(iii) $\quad x(-2 \pi)=\binom{2}{1}$
(iv) $x(\pi / 2)=\binom{0}{1}$

Question (9). (NSS 9.5.45) Two tanks, each holding 50 L of liquid are interconnected by pipes with liquid flowing from tank A into tank B at a rate of $4 L / m i n$ and from tank B into tank A at a rate of $1 \mathrm{~L} / \mathrm{min}$. The liquid inside each tank is kept well stirred. Pure water flows into tank A at a rate of $3 \mathrm{~L} / \mathrm{min}$, and the solution flows out of tank B at $3 \mathrm{~L} / \mathrm{min}$. If, initially, tank A contains 2.5 kg of salt and tank B contains no salt (only water), determine the mass of salt in each tank at time $t \geq 0$.

